CiteReady is an online personal knowledge management tool. Click to find out more!
 
Updated in 11/13/2018 10:57:32 AM      Viewed: 222 times      (Journal Article)

Emma R Cantwell-Dorris , John J O'Leary , Orla M Sheils
ABSTRACT
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is frequently mutated in human cancer. This pathway consists of a small GTP protein of the RAS family that is activated in response to extracellular signaling to recruit a member of the RAF kinase family to the cell membrane. Active RAF signals through MAP/ERK kinase to activate ERK and its downstream effectors to regulate a wide range of biological activities including cell differentiation, proliferation, senescence, and survival. Mutations in the v-raf murine sarcoma viral oncogenes homolog B1 (BRAF) isoform of the RAF kinase or KRAS isoform of the RAS protein are found as activating mutations in approximately 30% of all human cancers. The BRAF pathway has become a target of interest for molecular therapy, with promising results emerging from clinical trials. Here, the role of the most common BRAF mutation BRAF(V600E) in human carcinogenesis is investigated through a review of the literature, with specific focus on its role in melanoma, colorectal, and thyroid cancers and its potential as a therapeutic target.