CiteReady is an online personal knowledge management tool. Click to find out more!
 
Updated in 4/9/2017 4:02:03 PM      Viewed: 846 times      (Journal Article)
Scientific reports 6: 27240 (2016)

Effect of Transition Metal Ions on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions.

Baiyi Lu , Yinzhou Hu , Weisu Huang , Mengmeng Wang , Yuan Jiang , Tiantian Lou
ABSTRACT
This study investigated the effect of metal ions on the oxidation of sterols and their kinetics in oil-in-water emulsions. Sterol substrates were added with different metal ions (Cu(2+), Fe(2+), Mn(2+), Zn(2+), Na(+), and Mg(2+)) of five concentrations and investigated after 2 h of heating at 90 °C. The substrates added with Fe(2+) and Cu(2+) were heated continuously to evaluate the kinetics of four sterols and their corresponding sterol oxidation products (SOPs). Sterol oxidation increased as the metal ion concentration increased and the heating time was prolonged. The capability of the metal ions oxidizing sterols ranked as followed: Fe(2+) > Cu(2+) > Mn(2+) > Zn(2+) > Mg(2+) ≈ Na(+). 7-Ketosterol, 7β/7α-Hydroxysterol, 5β,6β/5α,6α-Epoxysterol, and Triols were the main oxides on the B ring, whereas 6β-Hydroxysterol was not or only slightly influenced. The acceleration of sterol degradation induced by Fe(2+) and Cu(2+), as well as the formation of oxidation products, followed first-order formation/elimination kinetics. The acceleration effect may be partly ascribed to the increase in elimination rate constant and formation rate constant. Transition metal ions can significantly induce sterol oxidation, which reduces food nutritional quality and triggers the formation of undesirable compounds, such as SOPs.
DOI: 10.1038/srep27240